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1. Comments on the derivation of Eq. (2.20) in [Sugiyama, 2000] (SP)

Consider the momentum and gyroviscous terms in Eq. (2.2) of SP
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Substitute from (2.14) and (2.17) of SP
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Thus, Eq. (1) becomes
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Now, from equations (26) and (35) in [Belova, 2001], we have the relation:
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where we use the following definitions [Belova, 2001]:
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Thus, if * diV V≡
� �

cancellations will occur in the inertial terms and we will get Equation

(2.20) of SP (but with a different form forυgv|| and forχ). However, in general, * diV V≠
� �

as you can see from taking the cross product of Equation (2.2) in SP with the magnetic
field:
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where the generalized polarization drift term is
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Thus, it is clear that Eq. (2.20) is not consistent with Eq. (2.2) in SP unless some
additional approximations (involving the polarization drift term) are made. However, the

second term in Eq. (5), involving the polarization drift, is of higher order in i

L

ρδ ∼ .

This is true both in the drift ordering, where 2,i
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th
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Gyrokinetic ordering where ,i
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∼ ∼ ∼ . Thus to lowest order in the small

parameterδ , Equations (2.20) and (2.2) in SP are consistent.

2. Alternative form keeping the effects of the polarization drift

Combine Eq. (1) and (3) to get for the inertial and gyroviscous terms in the ion
momentum equation:
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Now, define
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(7)

And we have for the final form of the FLR corrected momentum equation:
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In terms of the velocity defined in Eq. (7), the electron velocity becomes:
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Now, consider the Ohm’s law, Eq. (2.3) in SP:
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Substitute (9) into (10) to get:
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Thus, Equations (2.20) and (2.22) in SP could be replaced with those from Equations (8)
and (11) to retain the polarization term, and hence include the Hall term in Ohm’s law.

3. Alternative form using the ion velocity:

Note further that [Belova,2001] has an identity in Eq. (39) and (40) , valid in the
Gyrokinetic ordering, that can be used to write the ion inertial terms in another form. i.e.,
the identity:
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allows one to rewrite the FLR corrected momentum equation as:

( ) ( )ˆ( )i
i i i i gv

V
n m V V V b U P J B

t
µ χ υ∗ ⊥

 ∂ + − ∇ + ×∇ ∇ + ∇ + + ∇ = × ∂ 
� �

�
� � � � �

�i (13)

where [Belova, 2001]

U B p V qµ ⊥
⊥= +

� �

If this form were used, the most natural form for the Ohm’s law equation would be:
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4. Relation to [Hazeltine, 1992] (HM)

We can make contact with the notation of [Hazeltine,1992] by making the variable
transformation
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Thus, in their notation, Equation (8) can be written:
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or, in HM notation, similar to their Equation (138):
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Similarly, in their notation, the Ohm’s law, Eq (14) becomes:
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Thus, our equations (17) and (18) correspond to HM Equations (137) and (138) . The
additional terms in the momentum equation due to the gyroviscous stress are consistently
dropped in HM where it is argued that since these terms are basically the perpendicular
gradient of something, they are equivalent to the perpendicular pressure being slightly
different and will not affect things in a fundamental way. The additional terms in the
Ohm’s law equation are associated with parallel electron temperature gradients and
neoclassical effects.

5. Alternate formulation in terms of canonical momentum and
generalized vorticity:

Consider now the FLR corrected momentum equations (8) and the generalized Ohm’s

law equation (11). The two termsJ B P× − ∇
� �

in Equation (11) almost cancel one
another, and the first term leads to the whistler dynamics and the associated numerical
problems. Equation (8) can be used to eliminate this term, to yield for the magnetic field
evolution equation(without further approximation):
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where * ( )im
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is the generalized vorticity, the curl of the canonical
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6.0 Dispersion Relation

Expanding around a homogeneous force-free equilibrium with 0B P V∇× = ∇ = =
� �

, we
can obtain the 2-fluid zero-pressure dispersion relation from either (8), (11) or (19), (20).
Letting the background magnetic field and wave number have the forms (in Cartesian

coordinates): 0 (0,0, ), ( ,0, )x zB B k k k= =
��

, we obtain:
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where 2 2 2 2 2, .A i iV B nm e B m= Ω = The two roots for 2 2
AVω , corresponding to the

Hall modified fast wave (+) and shear Alfven wave (-) are given by:
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AVω are plotted in Figure 1 for values of the Hall parameter2 2 0AV Ω = and

0.2AV Ω = Note from the figure that when the Hall parameter vanishes, the two roots
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Further, when the Hall parameteris non-zero, and the wave number is large so that
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Figure 1a: Fast wave dispersion relation with no Hall term
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Figure 1b: Alfven wave dispersion relation with no Hall term
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Figure 1c: Fast wave dispersion relation with Hall term
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Figure 1d: Alfven wave dispersion relation with Hall term
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